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ABSTRACT

We discuss the bifurcetions of a two-parameter averaged system

-

of a forced oscillator of the form

X - Ex + nkmw + x + QHm = Ycosflt i

where E =2 ,¢7=8 and 32 =80Q.

Local bifurcations of Eopf end saddle-node type and global
vifurcations of saddle connection type are found to exist and are
investigated. The normsl forms technigques of Takens are used to
investigate the degeneracies of the system at certain exceptional
parameter points. Furthermore, the limit cycle behavior of the
system is discussed from the point of view of existence and uniqueness.
Numerical calculations are also used to support the various theoretical

results.
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